
ABSTRACT
Evolvable hardware

On Hardware Evolvability and Levels of Granularity

Adrian Stoics
Center for Space Microelectronics Technology

Jet Propulsion Laboratory,
California Institute of Technology

Pasadena, CA, 91109

addresses hardware that self-or~anizeti
reconfigures under the guidance of evolutionary mechanisms.
Some experiments in evolving at%ansistor level are briefly
presented and the perspective of transistors as functional
approximators is suggested. In a broader context one analyses
approaches to evolvable hardware specifying the level of
granularity at which evolution will operate, in accordance with the
level of design abstractions in the modeling hierarchy: primitive,
functional and behavioral levels in simulated circuits, and
transistor, subcircuit and high level function in hardware.
Comments are made linking the role of Automatically Definecl
Functions in hardware evolution, the process of achieving
higher/coarser levels of granularity in the semiotic perspective, and
the evolution of modularity of organisrhic designs. Finally, it is
suggested testing the effect of changing levels of granularity during
hardware evolution,

KEYWORDS: evolvable hardware, granrdari~, evolvability

1. EVOLVABLE HARDWARE
Evolution appears to be nature’s solution to design.

Being able to replicate such a capability in an artificial
system would offer tremendous insights into ourselves and
a powerful tool for building adaptive, intelligent systems.

From the perspective of space exploration, empowering
spacecraft with adaptive, intelligent capabilities is
invaluable for autonomy. Adaptive features are needed to
cope with the uncertainty of spacecraft remote operating
conditions, performing totally unexpected functions, and for
fault-tolerance. The on-board computer needs to be able to
solve problems for which solutions were not specified on
ground, and command the spacecraft to adapt to new
situations. For adaptive, versatile spacecraft, electronic
hardware must posses the capability to reconfigure, or
moreover, to self-reconfigure, as needed,

Evolvable hardware (EHW) is adaptive hardware that
reconfigures under the control of an evolutionary algorithm
[1]. Extrinsic EHW refers to evolution in a software
simulation using models of the hardware behavior,
downloading the configuration of the best evolved
architecture to programmable hardware. in intrinsic
hardware (to which most of the following discussion
applies) configuration bits are iteratively downloaded to

hardware, evaluating a degree of adaptationlfitness by
observing the behavior of the real hardware.

Hardware evolution is performed through a succession of
changes of elementary cell functions and cell inter-
connectivity pattern, thus obtaining increasingly more fit
configurations until a target functionality is reached. As it is
the case in nature, evolution results in individuals that are
increasingly more adapted to their environments, and can
change themselves to match changes in environments and
modifications of their own goals. Unlike in nature,
evolution in silicon has the advantage that could be
extremely rapid, with millions of generations of “living”
circuits evaluated in only a few seconds.

Hardware evolution can be seen as an on-chip search for
the circuit/configuration whose behavior is closest to the
required one (e.g. gives best performance/adaptation to the
environment). The suitability for a parallel hardware
implementation of evolvable hardware, with multiple
“islands” of concurrently evolving circuits on the same chip,
or in a multi-chip or stacked configuration is very attractive.

Evolvable hardware: a fully parralel process

.

I
Fig. 1. Parallel implementation for evolvable hardware

The granularity of hardware building blocks for those
attempting intrinsic evolvable hardware is currently
influenced by the availability of certain programmable
devices. The paper presents results of simulated evolution at
transistor level and discusses on the role of the level of
granularity and evolvability.

2. EXPERIMENTS IN EVOLVING CMOS
CIRCUITS AT TRANSISTOR LEVEL

Successful evolution has been reported in simulations
(analog [2], [3] and digital [4]) and in real hardware [5]
[6]. In the intrinsic EHW perspective, the focus has been
on using commercially available FPGAs (Field
Programmable Gate Arrays) but custom designs of chips
using higher-level functional blocks are also reported [6].
A collection of papers dedicated to the subject is [18].

In here the distinct focus of attention is on issues related
to designing the reconfigurable part of an evolvable
CMOS chip. The choice is ~otivated by the fact that
CMOS technology is the basi# of today’s microelectronics
industry, and NMOWPMOS transistors are the elementary
components of both analog and digital designs.

One can look at MOS transistors from the perspective of
function approximators. Function approximation has
recently been approached with computational intelligence
techniques, demonstrating general approximation
capabilities for structures of neural networks [7] [8] and
fuzzy systems [9] [10]. As hardware implementations
ultimately rely on silicon, a general fi.tnctional
approxirnator (FA) implemented in hardware will
ultimately be relying on (e.g.) MOS transistors.

A set of experiments was performed to investigate
evolution-related issues at transistor and simple sub-circuit
level. The objective was to evolve a circuit that provided
a bell-shaped response when the input increased linearly.
This response can be obtained for example with the circuit
in Fig. 2, with one input kept at constant voltage and the
other increasing linearly. The evolution was performed on
simulated circuits (using SPICE). Constraints were
imposed on the mechanism generating the circuits such
that all the circuits produced were SPICE simulatable (this
differs than Koza’s experiments where non-simulatable
circuits are eliminated by evolution (e..g in [1 1]). A
limitation existed also on the number of circuits evaluated,
which was much smaller than those reported by Ko~
(-104 compared to -1 On. .

am. klxm .rcul

Fig. 2 A circuit producing a bell-shaped response

In the first set of experiments the circuit topology
was considered known, and evolution concerned two types

of parameters: transistor channel Width and Length.
These parameter domains are discrete (they are a multiple
of the feature size), and for this case a total of 8 possible
widths and 8 lengths was considered. This led to a
(3+3)*8=48 bit coding for the circuit. Applying a Genetic
Algorithm on a population of 50 individuals, converged
easily to good solutions (an illustration of the population
after about 200 generations is given in Fig. 3. This is
explained by the fact that, although the region searched is
small (-210 in the search space of 24S possible
combinations), marry combinations are good; in this case
the topology is the fi,rndamental factor in circuit behavior.

Fig. 3 Response of a population of 49 circuits after 200
generations

The problem becomes complicated when one tries to
evolve the topology. Several alternatives were tried,
briefly described in the following:
- A 2D transistor array was considered, which resembled
an existing FPGA model (Xilinx 62 16). The code for each
cell specified the type of the cell which could be a
transistor with a certain orientation, or a type of wire
routing (these are illustrated in Fig. 4). A 2D chromosome
was associated to the array. Only evolution by GA WaS

attempted. The problem appears in speci&ng 2D
crossover, determining which 2D zones should be
swapped. Crossover must consider the fact that the new
circuits must match their connections at cell borders.

Fig. 4 A transistor array patterned after an FPGA

- A leveled architecture (with a matrix arrangement as in
Fig. 2) where components on a given level were from a
list of allowed components (see Fig, 5). Components
were low-level subcircuits (current mirror, differential

pair, pair of transistors). The coding was such that the
possible connections were limited to those that made
sense (e.g. the Source terminal of transistor in level 4
could not connect to VDD).

Fig. 5 Components allowed at different levels

●

●

The experiments can be interpreted as follows:
When the topology of the electronic circuit is given,

the transistor parameters (in this case PMOWNMOS
channel Width and Length) can be easily obtained
through evolution.

If one attempts evolution in a space restricted at the
size of the human-designed solution (in our case when
the circuits were limited at 8 transistors) it was not
possible to evolve a circuit from specifications. The
methods attempted included genetic algorithms, and a
search based on orthogonal arrays. With the
representation used, the search space appears very
much as a flat region, with a singular spike for the
solution circuit, Its neighbors, with genetic code
differing even one bit from the solution had extremely
low fimess; i.e. changing even one connection
between 2 transistors had a dramatic effect in circuit
behavior. This is possibly a consequence of the search
around the optimal size (minimal number of
transistors) solution. If the circuit would have
contained redundant circuitry changes in those regions
would have produce less significant effects.

It was however possible to evolve the topology using
genetic programming and an embrionic, growth-based
approach, in which the number of components (size of
the circuit) was not restricted (results obtained by Koza’s
group, not published yet). The first set of simulations led
to a circuit with 36 transistors.

Evolving on a structure with fixed, minimal number
of transistors for the function (for which a solution
circuit is already known) suffers from the fact that any
mutation involving a connection/topology change leads
to a dramatically different response. One possible way in
which this can be alleviated is to allow gradual

connections (e.g. connections
IOOG]) during the evolution.

modeled by resistors in [0
Thus may be architecture

which allows gradual transitions between topologies are
possible. It could look like a densely-connected “sea of
transistors” in which components are connected by a
“fuzzy” wire (i.e. with values in [0,1] rather than {0,1 }),
appearing much like a neural network, but with transistor
instead of neurons. The graded connection would have a
catalyst role during evolution; it smoothens the search
space around the solutions (in this respect neural
architectures using gradual connections/weights appear
suitable for evolution).

3. HARDWARE LEVELS OF
GRANULARITY AND EVOLUTION

A fundamental question is how does the choice of a level
of design abstraction influence hardware “evolvability”?

(The search/optimi@ion algorithm may be not that
important: the “no free lunch” theorems establish that for
any algorithm, any elevated performance over one class of
problems is offset by performance over another class [12].)
When evolution takes place directly in the component space
the choice of the primitive building blocks affects the
evolvability (e.g. evolving a NN appears easier than
evolving a circuit with transistors).

The choices for the level at which evolution process
could operate are as follows.

For evolving simulated circuits. The levels of design
abstraction in the modeling hierarchy are [13]:

● Primitive Devices (Transistor level - MOS,BJT,etc)
represented by anal)lical equations or tables

● Functional Macromodels (e,g. Op. Amp. Level)
derived by circuit simplification, circuit build-up,
symbolic methods

● Behavioral High level language descriptions -
linear and nonlinear mathematical equations, tables,
etc.

Evolution can be made at a certain level and then the
design converted for hardware implementation with
appropriate compilers and synthesis tools.

For evolving directly in hardware. A similar
selection of level of primitives is available in a
reconfigurable structure (specifying what should be the
“building blocks”):
● Transistor level. Some simulations were discussed

in the previous section.
● Subcircuit level. This is the Op. Amp./digital

gates level. Succesful hardware evolution taking
place on an FPGA chip was reported by Thompson
[5]. Versatile FPAA (Field Programmable Analog
Arrays) are still missing, but are expected to appear
on the market within 2-3 years.

. High level/ functional level One way of coping with
difflcuhies in evolving circuits is to provide high
level building blocks, filters, modulators in the
analog domain, or adders, MUXS in the digital
ones. This approach is followed by Higuchi [6].

The idea of modularity, and changing granularity during
evolution may be key to hardware to evolvability (in
intelligent systems, knowing presumes changing resolution
or granularity [14]). In the biological world modularity is
most likely the result of evolutionary modifications [15]. In
the evolvable hardware context, Koza has indicated the
usefulness of Automatically Defined Function (ADF) for
evolving analog electronic circuik (an ADF is “a function
(subroutine, module, etc.) that is dynamically evolved
during a run of genetic programming and that maybe called
by a program that is concurrently being evolved”) [16]. In
effect the idea that no approach to automated programming
(and consequently hardware evolution) is likely to be
successful on non-trivial problems unless it provides “some
hierarchical mechanism to exploit, by reuse and
parametrization, the regularities, symmetries, homogeneities,
similarities, patterns, and modularities inherent in problem
environments” is central to Koza’s book [17].

When choosing representation levels, it may be
interesting to consider having simultaneous representations
at different levels of granularity. During evolution one may
switch between levels of granularity depending which one
offers advantages at that time.

4. CONCLUSION

The paper presented simulation results and discussed issues
of evolution at transistor level. While parametric evolution
appears easy, topological evolution is hard. Different levels
of granularity are available for evolvable hardware. It was
suggested that changing/switching levels of granularity
during evolution may help.

5. ACKNOWLEDGEMENT

The research described in this paper was perfomled by
the Center for Space Microelectronics Technology, Jet
Propulsion Laboratory, California Institute of Technology,
and was sponsored by the JPL Director’s Discretionary
Fund.

6. REFERENCES

(2] Grimblcy, J. B. Automatic Analoguc Network Synthesis using Genetic
Algorithms, 1“ IE{EYEEEX Conf Genetic Algorithms in Engineering
Systems, UK, 1995

[3] Koza, J., Bennett Ill, F. H., Lohn J., Dunlap, F., Keane M, A., and
Andre, D. “Automated Synthesis of Computational Circuits Using Genetic
Prograsnming”. In Prac o-f Second Annual Genetic Programming
Conference, Stanford July 13-16, 1997 (to appear)

[4] Hcmmi, H., Hikage, T. and Shimohara, K, AdAM: A Hardware
Evolutionary System , In Proc. of ICEC, (193-196), 1997

[5] Thompson, A., Silicon Evolution. In Proc. of First Annual Genetic
Programming Conference, Stcmford, 1996

[6] Higuchi, T., Murakawa, M., Iwata, M., Kajitani, I., Liu, W. and Salami,
M, , “Evolvable Hardware at Function Level.”hr Proc, o~lCEC, (1 87-192),
1997

[7] Cybenko, G, Approximation by Superpositions of a Sigmoidal
Function. Mathematics of Control. Signals, and Systems, 2 (303-3 14), 1989

[8] Homik, K., Stinchombe, M,, and White, H Multilayer Feedfonvard
Networks are Universal Appmximators Neural Networks, 2 (359-366),
1995

[9] Kosko, B. Fuzzy Systems as Universal Approximators. In Prac. of fhe
1s1 IEEE Conference on Fuzzy Systems,(1I53-1162), 1992

[10] Wang, L, X, Fuzzy Systems are Universal Approximators. In Prac. o~
the 1st IEEE Conference on Fuzzy Systems, (11 63-1 170), 1992

[11] Koza, J,, Bennett 111, F. H., Andre, D. and Keane, M., Automated
WVWIWYG Design of Both the Topology and Component values of
Electrical Circuits Using Genetic Programming, In Proc. OJ First Annual
Genetic Programming Conference, Stanford, (123- 131), 1996

[12] Wolpert, f). H. and Macready, W. G,, “No Free Lunch Theorems for
Optimization”, IEEE Trarrsac(iorrs on EvoIufionary Computation, Vol. 1.
No. 1, (67-82), 1997

[13] Mantooth, H. A, and Fiegenbaum, M., Afodeling w,ifh an Analog
I{urdware Description Lmrguage. Kluwer Acedemic Publishers, 1995

[t4] Meystel, A. “What is ‘semiotics’atler sdl? (Learning how to know:
semiotics and multiscale cybernetics)”. Semiotcs97 Internet at
http: //isd.cme.nist gov/ proj/semiotics/isas97, html

[15] Wagner, G. P, and Altenberg, L,, “Perspective: Complex Adaptation
and the Evolution of Evolvability”. In Evolu/ion, 50(3), (967-976), 1996

[16] Koza, J., Andre, D., Bennett III, F, El,, and Kearre, M. A., Use of
AutonlaticaEly Defined Functions and Architecture-Altering Operations in
Automated Circuit Synthesis with Genetic Programming. In Proc. oJFirsf
Annual Genetic Programming Conference, Strmford, (132- 141), 1996

[17] Koza, J. R Genetic Programming 11: Automatic Discovery of Reusable
Programs. Cambridge, MA: MIT Press, 1994

[18] Sanchez, E. and Tomrrssini, M, (Eds), Towards Evolvable Hardware -
lhe Evolutionary Engineering Approach. Springer, 1996,

[1] De Garis, H. “Evolvable }{ardware: Genetic Prograsttming of a Darwin
Machine”. In Prac. Of the In!, CorrJ On Artt~cial Neural Networks and
Genetic Algorithms, Innsbruck, Austria, Springer Verlag, 1993

